Traffic Sign Detection and Identification

Vaughan W. Inman¹ & Brian H. Philips²

¹SAIC, McLean, Virginia, USA
²Federal Highway Administration, McLean, Virginia, USA

Email: vaughan.inman.ctr@dot.gov

Propose
Assess the conspicuity of traffic signs:
• Detection conspicuity angle
• Identification conspicuity angle

Introduction
• Decisions about the placement of traffic signs, and of measures to ensure conspicuity are left to “engineering judgment”
• Little guidance available to support those judgments
• No standard method of measuring conspicuity

Method
• Measure conspicuity in the lab and in the field using critical conspicuity angle
• Critical conspicuity angle is the greatest distance an observer can look away from an object and still detect its presence, or alternatively for signs, its message

Detection Stimuli
• Four backgrounds
 • Three Targets

Detection Laboratory Procedure
• Observers sit in driving simulator cab
• Stimuli projected on screen
• Trial:
 • Fixation cross 1 s
 • Background scene with or without target 0.1 s
 • Grey field until observer responds yes (target present) or no
• Method of limits
 • Target present on half of trials
 • Angle increased 3 degrees following 4 correct responses, decrease 3 degrees following 4 trials with 1 or more errors

Detection Field Procedure
• Observers points at sign from distance of 85 ft
• Gradually shifts gaze (and point) to left until sign presence no longer detectable
• Angle of gaze change recorded
Traffic Sign Detection and Identification

Detection Results
- **Laboratory:**
 - Observers sit in driving simulator cab
 - Stimuli projected on screen
 - Trial:
 - Fixation cross projected for 1 s
 - Background scene with target projected for 0.15 s
 - Grey field until observer identifies message
 - Offset of fixation cross from target varied from trial to trial:
 - -9, -6, 0, 3, 6, 9, 12, and 15 degrees, where negative offsets are to right of sign, positive offset to left

Identification Procedure (lab only)
- Observers sit in driving simulator cab
- Stimuli projected on screen
- Trial:
 - Fixation cross projected for 1 s
 - Background scene with target projected for 0.15 s
 - Grey field until observer identifies message
- Offset of fixation cross from target varied from trial to trial:
 - -9, -6, 0, 3, 6, 9, 12, and 15 degrees, where negative offsets are to right of sign, positive offset to left

Conclusions
- Surround (background) is important to traffic sign detection
- Speed Limit Sign detection is degraded when background is light colored or cluttered
- Method of limits is useful for determining detection conspicuity angle
- Traffic signs can be read without direct fixation
 - Speed limits > 80% accuracy with 9 degree offset
 - Warning signs text readable at 80% accuracy with 3 degree offset
- Background surround is not a major factor in reading signs—just detecting them
- Further research is needed to develop guidance for
 - Identifying when conspicuity enhancement is needed
 - Which conspicuity enhancements are most effective for given environments
 - Developing/refining traffic sign conspicuity enhancements

Identification Stimuli
- Six backgrounds
- Five speed limit targets (25 to 45 mph)
- Five text based warnings

Identification Results
- Speed Limits
- Warnings

Research funded by the FHWA MUTCD Team, Office of Operations.