The design of haptic gas pedal feedback to support eco-driving

Hamish Jamson, Daryl Hibberd, Natasha Merat

Institute for Transport Studies, Uni. Leeds

Driving Assessment 2013
ECO-DRIVING?

GOLDEN RULES

MAINTENANCE

MODE AND VEHICLE CHOICE

REAL-TIME, FEEDFORWARD, IN-TRIP GUIDANCE
Visual appears better researched than other modalities, e.g.

– Fuel Economy Driver Interfaces *(Rakauskas et al., 2010)*
– Persuasive In-Car Interfaces *(Meschtscherjakov et al., 2009)*

A slide without a picture, sorry.
Haptic design

- Few compare various haptic throttle feedback designs
- “Haptic Gas Pedal Feedback for Active Car-Following Support” (Mulder, 2007).

Figure 3. The means (horizontal lines) and 95% CI (grey bars) of the mean measured time headway (THW) (a) and standard deviation of THW (b) for all subjects.
University of Leeds Driving Simulator
“PLEASE FOLLOW THE GAS PEDAL GUIDANCE TO IMPROVE YOUR FUEL EFFICIENCY”

Cruise 40mph
7% gas pedal

Accelerate 40→60mph
23% gas pedal

Cruise 60mph
7% gas pedal
Standard (non-haptic) pedal
FORCE FEEDBACK
Additional force
Commanded decrease in acceleration
The diagram illustrates the acceleration pedal force (N) in relation to the accelerator pedal travel (%) for different settings:

- **LOW**
- **HIGH**

The lines represent:
- Standard pedal
- Cruise
- Accelerate

The graph shows how the force changes as the pedal travel increases.
STIFFNESS FEEDBACK
Gradient change

accelerator pedal force (N)

accelerator pedal travel (%)
ADAPTIVE STIFFNESS FEEDBACK
Advises increase
Hypotheses

• **Hypothesis 1** – A stiffness feedback system (adaptive or non-adaptive) would provide more effective eco-driving guidance than force feedback

• **Hypothesis 2** – Adaptive feedback would offer more complete and therefore more effective guidance than stiffness feedback

• **Hypothesis 3** – No clear prediction on whether high or low version of a system would perform best
“Which system guided you best to the appropriate pedal angle?”

• Rapid prototyping
 6 interface designs
• Paired comparisons (n = 15)
 Counterbalanced order
• 30 second repeated scenario
• Follow guidance
• 21 participants
 Balanced for age, gender, annual mileage, driving experience
Preference

- Maximum count = 105

LF < HF
LS < HS
LA < HA
LF = LS
LF = LA
LS = LA
HF = HS
HF > HA
HS = HA
Root mean squared pedal error
Root mean squared pedal error

- Main effect of System ($p<.001$)
- Low $>$ High (Force, Stiffness, Adaptive)
- Low /High only: Force $<$ Stiffness and Adaptive

- LF $>$ HF
- LS $>$ HS
- LA $>$ HA
- LF $<$ LS
- LF $<$ LA
- LS = LA
- HF $<$ HS
- HF $<$ HA
- HS = HA
Root mean squared pedal error

Cruise to Accelerate

Accelerate to Cruise
Summary

Subjective

• High intensity version preferred over low
• Between system preference differences more common for ‘high’ version of system
• Force feedback more effective
 – Contrast to Mulder et al. 2007

Objective

• Smaller pedal errors with force feedback
 – Specific to reducing gas pedal pressure?
• High vs. low difference
Prolonged drive

Decelerate scenarios

Workload and acceptance ratings
Scenarios

Village Entry

Bend Entry

S-Bend Entry

Village Centre

Bend Navigation

S-Bend Navigation

Village Exit

Bend Exit

S-Bend Exit
Results – Pedal Error

Speed decrease scenarios

![Bar chart showing error percentages for different scenarios with error bars for visual, adaptive force, and adaptive stiffness conditions. The x-axis represents different scenarios: Village, Bend, and Curve.]
Pedal error

• No comparison with baseline

• Better performance with adaptive haptic-force system than with the adaptive haptic-stiffness or visual systems.

• Speed decrease (cruise to accelerate scenarios) showed a significant effect of system (p<.001)
Acceptance and Workload

NASA-TLX Score (max. 60)

- Baseline
- Visual
- Adaptive Force
- Adaptive Stiffness

System

Acceptance Score (max.+2, min.-2)

- Visual
- Adaptive Force
- Adaptive Stiffness
Hypotheses

• **Hypothesis 1** – A stiffness feedback system (adaptive or non-adaptive) would provide more effective eco-driving guidance than force feedback

• **Hypothesis 2** – Adaptive feedback would offer more complete and therefore more effective guidance than stiffness feedback

• **Hypothesis 3** – No clear prediction on whether high or low version of a system would perform best
Conclusions

• **Hypothesis 1** – A force feedback system encourages greater accuracy in following gas pedal guidance, especially in deceleration scenarios.

• **Hypothesis 2** – Adaptive feedback does not produce a clear advantage in these testing scenarios...yet.

• **Hypothesis 3** – High version of systems produce better performance and preferred...of the presentation!
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Accelerate phase</td>
<td>constant gradient</td>
<td>gradient change</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td>gradient change</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7% pedal effort</td>
<td>7-15% increase pedal effort</td>
<td>15% pedal effort</td>
<td>15% pedal effort</td>
<td>15-7% decrease pedal effort</td>
<td>7% pedal effort</td>
<td>7-0% decrease pedal effort</td>
<td>0% pedal effort</td>
<td>0% pedal effort</td>
<td>0-7% increase pedal effort</td>
<td>7% pedal effort</td>
<td></td>
</tr>
<tr>
<td>B: Decelerate phase</td>
<td>gradient change</td>
<td>constant gradient</td>
<td>constant gradient</td>
<td></td>
</tr>
<tr>
<td>C: Decelerate phase</td>
<td>constant gradient</td>
<td></td>
</tr>
<tr>
<td>D: Accelerate phase</td>
<td>constant gradient</td>
<td></td>
</tr>
</tbody>
</table>
Rapid prototyping (Part 2)

- Visual and visual/auditory
- First and second order
What happened next?
The design of haptic gas pedal feedback to support eco-driving

Hamish Jamson, Daryl Hibberd, Natasha Merat

Institute for Transport Studies, Uni. Leeds

Driving Assessment 2013