The Measurement of Situation Awareness for Automobile Technologies of the Future

Cheryl A. Bolstad
SA Technologies, Inc.
Situation awareness is key to good decision making and good performance.
What is Situation Awareness?

Situation Awareness is the **Perception** of the Elements in the Environment within a Volume of Time and Space, the **Comprehension** of their Meaning, and the **Projection** of their Status in the Near Future.

Endsley, 1988
Situation Awareness

Perception
- Fuel level
- Speed
- Speed limit
- Headlights state
- Planned route
- Location
- Weather
- Traffic on route
- Accidents on route

Comprehension
- Distance to next turn on route
- Deviation between speed limit and current speed
- Distance to next car
- Impact of hazard on own safety

Projection
- Projected time to destination on current route
- Projected time to destination on alternate route
- Projected hazard level of weather
- Projected likelihood of getting a ticket
What Kinds of SA Problems Do People Have?

- Don’t Correctly Understand Information They Do Get: 17%
- Don’t Project What Will Happen in Future: 5%
- Don’t Get Information That Is Needed: 78%
Advanced Technologies for Driving

• External Devices
 – Cell phones
 – PDAs
 – DVD players

• Advanced Automotive Technologies
 – Cruise control
 – Automatic headlights
 – Navigation systems
 – Rear/Side facing cameras
 – Self Parking
 – Automated car following
 – The driverless car?
Why Are We Automating?

- **Enhanced Performance**
 - **Monotonous tasks**
 - Cruise control
 - **Hard to do tasks**
 - Parallel parking
 - Remembering to turn on headlights
 - Navigation
 - **Increased Perception**
 - Side/rear cameras
- **Increased traffic flow**
 - Automated following
 - Brake detection

Where are the hidden costs?

Know the Situation. Know the Solution.
Situation Awareness Issues with Advanced Driving Technologies

So where is the problem?

- Attention Allocation (distraction)
- Out-of-the-loop Performance Problems
- Misplaced Salience
- Complexity Creep
- Attentional Tunneling
- Data Overload
- Out-of-the-loop Syndrome

© SA Technologies, Inc 2008

Know the Situation. Know the Solution.
Deployment of Attention Underlies Much of SA

Data Driven Processing

- Salient Cues Catch Attention

Focused Attention

- Current Goals Direct Attention

Goal Directed Processing

- Goal Prioritization

Divided Attention

- Mis-Directed Attention

Attentional Narrowing

© SA Technologies, Inc 2008
SA Metrics Are Needed

- Metrics are needed to objectively assess the attentional capacity and ultimately the SA of the driver
 - Do new technologies actually improve SA?
 - Which aspects of SA are hurt by technology?
- SA measures an individual’s ability to dynamically integrate multiple pieces of information into a coherent picture under operational challenges
- Multiple metrics have been proposed
 - Not measure the same thing
 - Many not suited to real-time tasks
 - Difficult to analyze data
 - Costly to implement
Different SA Metrics

Process Indices
- Eye Movements
- Information Acquisition
- Communications & Verbalizations

State of Knowledge
- Questionnaires
- Post-test
- On-line probes
- SAGAT
- Subjective Measures
- Modeled Measures

Behaviors
- Actions
- Verbalizations

Performance
- System Performance
- Emergency Performance

Moderating Factors:
- Strategies
- Skills
- Knowledge
- Abilities

Strategies
- Rules & Procedures
- Training
- Personality Factors

System Capabilities
- Others Capabilities & Actions

© SA Technologies, Inc 2008
Process Indices

- Eye Tracking
- Information Acquisition
- Verbalizations & Communication
 - **Pros**
 - Objective
 - Indication of information access / utilization
 - **Cons**
 - Difficult to implement in real-world environment
 - Can’t infer what is done with information (processing)
 - Can’t tell whether information is registered correctly
 - Can’t tell what is retained in memory
 - Create large amounts of data to analyze
 - **Recommendations**
 - Best for examining SA processes rather than product
 - Examine specific research questions
State of Knowledge Metrics – Post Test Questionnaires

• Pros
 – Objective
 – Detailed assessment
 – Less intrusive
 – Easy to implement in simulated or real-world environment

• Cons
 – Rationalization/Generalization after the fact

• Recommendations
 – Provide reliable SA for end of event
 – Can be used to determine overall success of a new technology
Audio Questions asked during the scenario
Measures accuracy and response time

- Measures accuracy and response time
- Pros
 - Can be used during the task
 - Can easily look for needed information
 - Measure response time as well as accuracy
- Cons
 - May interfere with task performance
 - Can collect a more limited amount of information
 - Multiple measures needed for reliability
- Recommendations
 - Requires careful synchronization with mission tasks/events
 - One question at a time
State of Knowledge Measures – SAGAT

• Situation Awareness Global Assessment Technique (SAGAT)
 - At random times, freeze the exercise
 - Administer a rapid battery of queries
 - Score on the basis of objective data

• SAGAT Pros
 – No post data collection
 – Minimizes potential biasing of subject SA
 – Direct measure of SA
 – Random sampling provides unbiased measure of SA
 – Heavily validated

• SAGAT Cons
 – Requires the interruption of the simulation
 – Need to gather SA information requirements for query generation
SAGAT Performance for Simulated Driving Task

Mean Percent Correct

<table>
<thead>
<tr>
<th>Age Category</th>
<th>Mean Percent Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>62.5</td>
</tr>
<tr>
<td>Middle</td>
<td>59.38</td>
</tr>
<tr>
<td>Old</td>
<td>56.25</td>
</tr>
</tbody>
</table>
Percentage of Cars Correctly Located

Instructions: Please indicate the location of yourself and other cars. Mark yourself with an “O” and other cars with an “X”. Each square represents one car length.
Direct Measures - Subjective Ratings

- **Self Ratings**
 - Situational Awareness Rating Technique (SART)
 - SA- SWORD

- **Observer Ratings**
 - **Pros**
 - Easy
 - Inexpensive
 - **Cons**
 - Do you know what you don’t know?
 - Observers don’t know what the person knows
 - Maybe tainted by performance outcomes
 - Related to confidence in own SA
 - **Recommendations**
 - Must modify existing scales for driving task
 - Should be used to complement objective techniques
Imbedded Tasks
Testable Response Method

• Pros
 – Objective
 – Desired outcome
 – Non-intrusive

• Cons
 – Sensitivity
 – Diagnosticity
 – Interpretability of measure
 • Assumes certain behavior given SA
 – Must infer SA

• Recommendations
 – Best used in conjunction with other measures
 – Must cover a wide range of tasks/scenarios

Did he notice the ball rolling across the street?
Did he brake in time?
Consistent speed?
Did she respond to an Inaccurate display setting?
Measurement Summary

• Measurement of SA in the evaluation of system design options provides critical information with greater sensitivity than simple performance measures
 – Displays
 – Automation & Decision Support Systems

• Choice of measures is important
 – Objective measures of SA most sensitive and diagnostic
 – Subjective measures of SA more related to confidence in one’s SA
 – Performance measures can be used if carefully selected, but interpretation is tricky
Conclusion

- Situation awareness is and will remain critical for driving
- New technologies may aid performance and SA in some cases
- But they may also reduce SA, leaving drivers with a low ability to intervene in automated activities when needed
- The development of successful and appropriate new technologies for the automobile is dependant on consideration of factors that impact on SA as well as careful measurement of driver SA
Questions???
• What do we want to know?
 – Ability of drivers to attend to correct information needed for SA development
 • Process indices like eye tracking
 – Continuous levels of SA during driving
 • State of knowledge measures such as SAGAT, ACASA, real-time probes
 – Drivers confidence in their SA abilities
 • State of knowledge metrics such as post test questionnaires
Measurement of SA: Requirements/Issues

• Validity
 – Are we measuring what we intend to measure?

• Reliability
 – Does measure remain consistent?
 – What else does it correlate with?

• Sensitivity
 – Will measure detect differences in SA?
 – What is a good SA score?

• Operational Constraints
 – Dynamic priorities
 – Measurement Location
 – Cost to implement
 – Time to analyze data
SA Measure Comparisons

• Endsley & Selcon, 1998
 – SART highly correlated ($r^2 = .69$ to $.74$) with:
 • Subjective SA
 • Confidence level
 – SAGAT & SART compared on common trials
 • NO relationship between SART and any SAGAT measure

• Endsley, Sollenberger & Stein, 2000
 – Measured SA via real-time probes, SAGAT, SART in ATC task
 – Some relationship between SART and other SA measures but **NOT** SAGAT